1. Let X be a first-countable topological space and let $A \subseteq X$.
(a) Prove (reprove rather) that for any $x \in \bar{A}$, there is a sequence in A converging to x.
(b) Conclude that if A is dense, then for every $x \in X$, there is a sequence in A converging to x.
(c) Deduce that for every real $r \in \mathbb{R}$, there are sequences $\left(q_{n}\right) \subseteq \mathbb{Q}$ and $\left(r_{n}\right) \subseteq \mathbb{R} \backslash \mathbb{Q}$ converging to r.
2. Consider \mathbb{R} with its standard metric.
(a) Prove that the characteristic/indicator function $\mathbb{1}_{\mathbb{Q}}: \mathbb{R} \rightarrow \mathbb{R}$ is discontinuous at every point $x_{0} \in \mathbb{R}$.
(b) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined as follows: $\left.f\right|_{\mathbb{R} \backslash \mathbb{Q}}:=0$ and for each $q \in \mathbb{Q}, f(q)=\frac{1}{n}$, where $q=\frac{m}{n}$ is irreducible and $m \in \mathbb{Z}, n \in \mathbb{N}^{+}$. Prove that f is continuous at every irrational and it is discontinuous at every rational.

Hint: Recall that in metric spaces, continuity and sequential continuity are equivalent. Use the fact that for every real, there is a sequence of rationals converging to it and their denominators necessarily grow.
3. Let X, Y be topological spaces, where Y is T_{1}, i.e., for any distinct points $y_{0}, y_{1} \in Y$, there is an open set $U_{0} \ni y_{0}$ that does not contain $y_{1}{ }^{1}$. Prove that a function $f: X \rightarrow Y$ is sequentially continuous (i.e., sequentially continuous at every point in X) if and only if f maps convergent sequences in X to convergent sequences in Y.
4. Let X be a first-countable topological space and let $\left(x_{n}\right)$ be a sequence in it. Let T_{n} be the $n^{\text {th }}$ tail set of the sequence, i.e,

$$
T_{n}:=\left\{x_{m}: m \geqslant n\right\} .
$$

Prove that for each $x \in \bigcap_{n \in \mathbb{N}} \overline{T_{n}}$, there is a subsequence ${ }^{2}\left(x_{n_{k}}\right)_{k \in \mathbb{N}}$ converging to x.
5. Let (X, d) be a metric space. Show that every Cauchy sequence $\left(x_{n}\right)$ admits a subsequence $\left(x_{n_{k}}\right)$ with the property that $d\left(x_{n_{k}}, x_{n_{\ell}}\right) \leqslant 2^{-k}$ for all $k \leqslant \ell$.
6. Recall the following characterization of completeness for metric spaces.

Theorem (Completeness via nonempty intersections). For a metric space (X, d), the following are equivalent.
(1) (X, d) is complete.

[^0](2) Every decreasing ${ }^{3}$ sequence $\left(C_{n}\right)$ of closed sets with vanishing diameter ${ }^{4}$ has a nonempty intersection.
(3) Every decreasing sequence $\left(B_{n}\right)$ of closed balls of vanishing radius (equivalently, vanishing diameter) has a nonempty intersection.

In class we proved $(1) \Leftrightarrow(2)$. Noting that $(2) \Rightarrow(3)$ is trivial, prove $(3) \Rightarrow(1)$ following the steps below.
(i) Assume (3), and to prove (1), fix a Cauchy sequence (x_{n}). Aiming to prove that it converges, argue that it is enough to show that a subsequence of $\left(x_{n}\right)$ converges.
(ii) Let $\left(y_{k}\right):=\left(x_{n_{k}}\right)$ be a subsequence as in Problem 5.
(iii) Prove that for each $k \in \mathbb{N}$, the closed ball $\bar{B}\left(y_{k}, 2^{-k}\right)$ contains the $k^{\text {th }}$ tail set $T_{k}:=$ $\left\{y_{m}: m \geqslant k\right\}$ and $\bar{B}\left(y_{k}, 2 \cdot 2^{-k}\right) \supseteq \bar{B}\left(y_{k+1}, 2 \cdot 2^{-(k+1)}\right)$.
(iv) Conclude that $\bigcap_{k \in \mathbb{N}} \bar{B}\left(y_{k}, 2 \cdot 2^{-k}\right) \neq \emptyset$, so $\bigcap_{k \in \mathbb{N}} \bar{B}\left(y_{k}, 2 \cdot 2^{-k}\right)=\{x\}$ for some x.
(v) Prove that there is a subsequence $\left(y_{k_{m}}\right)$ converging to x, thus showing that a subsequence of $\left(x_{n}\right)$ converges.
7. Let \mathcal{T} be the (weird) topology on \mathbb{R} generated by the sets $\{0, r\}$, where r ranges over \mathbb{R}. In particular $\{0,0\}=\{0\}$ is open.
(a) Draw this topological space as a flower (daisy) with 0 being the center and the sets $\{0, r\}$, with $r \neq 0$, being the petals.
(b) Observe that the sets $\{0, r\}$, with $r \in \mathbb{R}$, actually form a base for the topology.
(c) Prove that this space is not Hausdorff; in fact, $\{0\}$ is not closed.
(d) Show that for each $r \in \mathbb{R}$, the collection $\{\{0, r\}\}$ is a neighborhood base for r. Conclude that \mathcal{T} is first-countable.
(e) Yet, show that \mathcal{T} is not second-countable.
(f) Prove that the set $\{0\}$ is dense. Conclude that this space is separable.
8. Reprove carefully that for a first-countable space, compactness implies sequential compactness.
9. Let (X, d) be a metric space. For $\varepsilon>0$, call a set $F \subseteq X$ an ε-net if the open balls $B(x, \varepsilon)$ with $x \in F$ cover all of X, i.e., $X=\bigcup_{x \in F} B(x, \varepsilon)$. Call the space X totally bounded if for each $\varepsilon>0$, there is a finite ε-net. Prove that (X, d) is sequentially compact if and only if it is complete and totally bounded.

Hint: Prove \Rightarrow via the contrapositive. The proof of \Leftarrow is very similar to that of the Bolzano-Weierstrass theorem, except that in the latter we always put infinitely-many pigeons into two holes, whereas here, we put infinitely-many pigeons into finitely-many holes (the ε-nets are finite).

[^1]Remark: By Problem 8, compactness implies sequential compactness for metric spaces. The converse is also true, but it's a bit harder to show. Ask me if you are curious.
10. Consider \mathbb{R} with its standard metric.
(a) Prove that a subset of \mathbb{R} is complete (as a sub-metric space of \mathbb{R}) if and only if it is closed.
(b) Prove that a subset of \mathbb{R} is totally bounded if and only if it is bounded.
(c) Conclude that a subset of \mathbb{R} is sequentially compact if and only if it is closed and bounded.

[^0]: ${ }^{1}$ This is a weaker property than Hausdorff.
 ${ }^{2}$ Formally speaking, a subsequence of a sequence $\left(x_{n}\right)$ is a sequence $\left(y_{k}\right)$ such that there is a strictly increasing map $\mathbb{N} \rightarrow \mathbb{N}$ denoted $k \mapsto n_{k}$ such that $y_{k}=x_{n_{k}}$ for each $k \in \mathbb{N}$. Instead of writing (y_{k}), we simply write $\left(x_{n_{k}}\right)$, with the understanding that the n_{k} are increasing, i.e., $n_{0}<n_{1}<n_{2}<\ldots$

[^1]: ${ }^{3}$ A sequence $\left(S_{n}\right)$ is said to be decreasing (resp., increasing) if $C_{n} \supseteq C_{n+1}$ (resp., $C_{n} \subseteq C_{n+1}$) for all $n \in \mathbb{N}$.
 ${ }^{4}$ Vanishing diameter means that $\operatorname{diam}\left(C_{n}\right) \rightarrow 0$, where for $A \subseteq X, \operatorname{diam}(A):=\sup \{d(x, y): x, y \in A\}$.

