Math 432: Set Theory and Topology PRACTICE PROBLEMS FOR TOPOLOGY

1. Let X be a first-countable topological space and let A C X.

(a) Prove (reprove rather) that for any x € A, there is a sequence in A converging to x.

(b) Conclude that if A is dense, then for every x € X, there is a sequence in A converging
to x.

(c) Deduce that for every real r € R, there are sequences (q,,) C Q and (r,) C R\ Q
converging to r.

2. Consider R with its standard metric.

(a) Prove that the characteristic/indicator function 1g : R — R is discontinuous at
every point xy € R.

(b) Let f: R — IR be defined as follows: f|r g := 0 and for each g € Q, f(q) = %,

where q = 77 is irreducible and m € Z, n € IN". Prove that f is continuous at every

irrational and it is discontinuous at every rational.

Hint: Recall that in metric spaces, continuity and sequential continuity are equiv-
alent. Use the fact that for every real, there is a sequence of rationals converging to
it and their denominators necessarily grow.

3. Let X,Y be topological spaces, where Y is Ty, i.e., for any distinct points yy,y; € Y,

there is an open set Uy > y, that does not contain y;'. Prove that a function f: X — Y
is sequentially continuous (i.e., sequentially continuous at every point in X) if and only
if f maps convergent sequences in X to convergent sequences in Y.

4. Let X be a first-countable topological space and let (x,) be a sequence in it. Let T, be
the nth tail set of the sequence, i.e,
T, :={x,, :m=>n}.
Prove that for each x € (), T, there is a subsequence?® (X, Jkew converging to x.
5. Let (X,d) be a metric space. Show that every Cauchy sequence (x,,) admits a subse-
quence (x,, ) with the property that d(x,,, x,,) < 27k for all k < ¢.
6. Recall the following characterization of completeness for metric spaces.

Theorem (Completeness via nonempty intersections). For a metric space (X,d), the
following are equivalent.

(1) (X,d) is complete.

IThis is a weaker property than Hausdorff.

2Formally speaking, a subsequence of a sequence (x,) is a sequence (yx) such that there is a strictly
increasing map IN — IN denoted k +— ny such that y; = x,, for each k € IN. Instead of writing (yx), we simply
write (x,, ), with the understanding that the 1y are increasing, i.e., ng <n; <n,; <...



(2) Every decreasing® sequence (C,,) of closed sets with vanishing diameter* has a nonempty
intersection.

(3) Every decreasing sequence (B,,) of closed balls of vanishing radius (equivalently, vanish-
ing diameter) has a nonempty intersection.

In class we proved (1)<(2). Noting that (2)=(3) is trivial, prove (3)=(1) following the

steps below.

(i) Assume (3), and to prove (1), fix a Cauchy sequence (x,). Aiming to prove that it
converges, argue that it is enough to show that a subsequence of (x,) converges.

(ii) Let (yx):= (x;,) be a subsequence as in Problem 5.

(iii) Prove that for each k € IN, the closed ball B(yy, 27¥) contains the k" tail set T :=
(U s m >k} and B(yg, 2-27%) 2 B(ygy1, 2+ 270F).

(iv) Conclude that Myep BV, 2-27%) 20, so Nen B(vk, 2 - 27F) = {x} for some x.

(v) Prove that there is a subsequence (y;, ) converging to x, thus showing that a
subsequence of (x,,) converges.

. Let 7 be the (weird) topology on IR generated by the sets {0, 7}, where r ranges over R.
In particular {0, 0} = {0} is open.

(a) Draw this topological space as a flower (daisy) with 0 being the center and the sets
{0,7}, with r # 0, being the petals.
(b) Observe that the sets {0, 7}, with r € R, actually form a base for the topology.

(c) Prove that this space is not Hausdorff; in fact, {0} is not closed.

(d) Show that for each r € R, the collection {{O,r}} is a neighborhood base for r.
Conclude that 7 is first-countable.

(e) Yet, show that 7 is not second-countable.

(f) Prove that the set {0} is dense. Conclude that this space is separable.

. Reprove carefully that for a first-countable space, compactness implies sequential
compactness.

. Let (X,d) be a metric space. For € > 0, call a set F C X an ¢-net if the open balls B(x, ¢)
with x € F cover all of X, i.e., X = |J,cr B(x, €). Call the space X totally bounded if for
each ¢ > 0, there is a finite e-net. Prove that (X, d) is sequentially compact if and only if
it is complete and totally bounded.

Hint: Prove = via the contrapositive. The proof of < is very similar to that of the
Bolzano-Weierstrass theorem, except that in the latter we always put infinitely-many
pigeons into two holes, whereas here, we put infinitely-many pigeons into finitely-many
holes (the e-nets are finite).

3A sequence (S,) is said to be decreasing (resp., increasing) if C,, 2 C,,;1 (resp., C,, € C,,1) for all n € IN.
4Vanishing diameter means that diam(C,) — 0, where for A C X, diam(A) :=sup{d(x,y) : x,v € A}.
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Remark: By Problem 8, compactness implies sequential compactness for metric spaces.
The converse is also true, but it’s a bit harder to show. Ask me if you are curious.
10. Consider R with its standard metric.

(a) Prove that a subset of R is complete (as a sub-metric space of R) if and only if it is
closed.

(b) Prove that a subset of IR is totally bounded if and only if it is bounded.

(c) Conclude that a subset of R is sequentially compact if and only if it is closed and
bounded.



