
Math 432: Set Theory and Topology Practice problems for topology

1. Let X be a first-countable topological space and let A ⊆ X.

(a) Prove (reprove rather) that for any x ∈ A, there is a sequence in A converging to x.

(b) Conclude that if A is dense, then for every x ∈ X, there is a sequence in A converging
to x.

(c) Deduce that for every real r ∈ R, there are sequences (qn) ⊆ Q and (rn) ⊆ R \Q
converging to r.

2. Consider R with its standard metric.

(a) Prove that the characteristic/indicator function 1
Q

: R→ R is discontinuous at
every point x0 ∈R.

(b) Let f : R → R be defined as follows: f |
R\Q

..= 0 and for each q ∈ Q, f (q) = 1
n ,

where q = m
n is irreducible and m ∈Z, n ∈N+. Prove that f is continuous at every

irrational and it is discontinuous at every rational.

Hint: Recall that in metric spaces, continuity and sequential continuity are equiv-
alent. Use the fact that for every real, there is a sequence of rationals converging to
it and their denominators necessarily grow.

3. Let X,Y be topological spaces, where Y is T1, i.e., for any distinct points y0, y1 ∈ Y ,
there is an open set U0 3 y0 that does not contain y1

1. Prove that a function f : X→ Y
is sequentially continuous (i.e., sequentially continuous at every point in X) if and only
if f maps convergent sequences in X to convergent sequences in Y .

4. Let X be a first-countable topological space and let (xn) be a sequence in it. Let Tn be
the nth tail set of the sequence, i.e,

Tn ..= {xm : m > n} .

Prove that for each x ∈
⋂

n∈NTn, there is a subsequence2 (xnk )k∈N converging to x.

5. Let (X,d) be a metric space. Show that every Cauchy sequence (xn) admits a subse-
quence (xnk ) with the property that d(xnk ,xn` ) 6 2−k for all k 6 `.

6. Recall the following characterization of completeness for metric spaces.

Theorem (Completeness via nonempty intersections). For a metric space (X,d), the
following are equivalent.

(1) (X,d) is complete.

1This is a weaker property than Hausdorff.
2Formally speaking, a subsequence of a sequence (xn) is a sequence (yk) such that there is a strictly

increasing map N→N denoted k 7→ nk such that yk = xnk for each k ∈N. Instead of writing (yk), we simply
write (xnk ), with the understanding that the nk are increasing, i.e., n0 < n1 < n2 < . . .



(2) Every decreasing3 sequence (Cn) of closed sets with vanishing diameter4 has a nonempty
intersection.

(3) Every decreasing sequence (Bn) of closed balls of vanishing radius (equivalently, vanish-
ing diameter) has a nonempty intersection.

In class we proved (1)⇔(2). Noting that (2)⇒(3) is trivial, prove (3)⇒(1) following the
steps below.

(i) Assume (3), and to prove (1), fix a Cauchy sequence (xn). Aiming to prove that it
converges, argue that it is enough to show that a subsequence of (xn) converges.

(ii) Let (yk) ..= (xnk ) be a subsequence as in Problem 5.

(iii) Prove that for each k ∈N, the closed ball B̄(yk ,2−k) contains the kth tail set Tk ..=
{ym : m > k} and B̄(yk ,2 · 2−k) ⊇ B̄(yk+1,2 · 2−(k+1)).

(iv) Conclude that
⋂

k∈N B̄(yk ,2 · 2−k) , ∅, so
⋂

k∈N B̄(yk ,2 · 2−k) = {x} for some x.

(v) Prove that there is a subsequence (ykm) converging to x, thus showing that a
subsequence of (xn) converges.

7. Let T be the (weird) topology on R generated by the sets {0, r}, where r ranges over R.
In particular {0,0} = {0} is open.

(a) Draw this topological space as a flower (daisy) with 0 being the center and the sets
{0, r}, with r , 0, being the petals.

(b) Observe that the sets {0, r}, with r ∈R, actually form a base for the topology.

(c) Prove that this space is not Hausdorff; in fact, {0} is not closed.

(d) Show that for each r ∈ R, the collection
{
{0, r}

}
is a neighborhood base for r.

Conclude that T is first-countable.

(e) Yet, show that T is not second-countable.

(f) Prove that the set {0} is dense. Conclude that this space is separable.

8. Reprove carefully that for a first-countable space, compactness implies sequential
compactness.

9. Let (X,d) be a metric space. For ε > 0, call a set F ⊆ X an ε-net if the open balls B(x,ε)
with x ∈ F cover all of X, i.e., X =

⋃
x∈F B(x,ε). Call the space X totally bounded if for

each ε > 0, there is a finite ε-net. Prove that (X,d) is sequentially compact if and only if
it is complete and totally bounded.

Hint: Prove⇒ via the contrapositive. The proof of⇐ is very similar to that of the
Bolzano–Weierstrass theorem, except that in the latter we always put infinitely-many
pigeons into two holes, whereas here, we put infinitely-many pigeons into finitely-many
holes (the ε-nets are finite).

3A sequence (Sn) is said to be decreasing (resp., increasing) if Cn ⊇ Cn+1 (resp., Cn ⊆ Cn+1) for all n ∈N.
4Vanishing diameter means that diam(Cn)→ 0, where for A ⊆ X, diam(A) ..= sup {d(x,y) : x,y ∈ A}.
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Remark: By Problem 8, compactness implies sequential compactness for metric spaces.
The converse is also true, but it’s a bit harder to show. Ask me if you are curious.

10.Consider R with its standard metric.

(a) Prove that a subset of R is complete (as a sub-metric space of R) if and only if it is
closed.

(b) Prove that a subset of R is totally bounded if and only if it is bounded.

(c) Conclude that a subset of R is sequentially compact if and only if it is closed and
bounded.
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