- **1.** Let *X* be a first-countable topological space and let $A \subseteq X$.
 - (a) Prove (reprove rather) that for any $x \in \overline{A}$, there is a sequence in A converging to x.
 - (b) Conclude that if A is dense, then for every $x \in X$, there is a sequence in A converging to x.
 - (c) Deduce that for every real $r \in \mathbb{R}$, there are sequences $(q_n) \subseteq \mathbb{Q}$ and $(r_n) \subseteq \mathbb{R} \setminus \mathbb{Q}$ converging to r.
- **2.** Consider \mathbb{R} with its standard metric.
 - (a) Prove that the characteristic/indicator function $\mathbb{1}_{\mathbb{Q}} : \mathbb{R} \to \mathbb{R}$ is discontinuous at every point $x_0 \in \mathbb{R}$.
 - (b) Let $f: \mathbb{R} \to \mathbb{R}$ be defined as follows: $f|_{\mathbb{R}\setminus\mathbb{Q}} := 0$ and for each $q \in \mathbb{Q}$, $f(q) = \frac{1}{n}$, where $q = \frac{m}{n}$ is irreducible and $m \in \mathbb{Z}$, $n \in \mathbb{N}^+$. Prove that f is continuous at every irrational and it is discontinuous at every rational.

HINT: Recall that in metric spaces, continuity and sequential continuity are equivalent. Use the fact that for every real, there is a sequence of rationals converging to it and their denominators necessarily grow.

- **3.** Let *X*, *Y* be topological spaces, where *Y* is T_1 , i.e., for any distinct points $y_0, y_1 \in Y$, there is an open set $U_0 \ni y_0$ that does not contain y_1^{-1} . Prove that a function $f: X \to Y$ is sequentially continuous (i.e., sequentially continuous at every point in *X*) if and only if *f* maps convergent sequences in *X* to convergent sequences in *Y*.
- 4. Let X be a first-countable topological space and let (x_n) be a sequence in it. Let T_n be the nth tail set of the sequence, i.e,

$$T_n := \{x_m : m \ge n\}.$$

Prove that for each $x \in \bigcap_{n \in \mathbb{N}} \overline{T_n}$, there is a subsequence $(x_{n_k})_{k \in \mathbb{N}}$ converging to x.

- 5. Let (X, d) be a metric space. Show that every Cauchy sequence (x_n) admits a subsequence (x_{n_k}) with the property that $d(x_{n_k}, x_{n_\ell}) \leq 2^{-k}$ for all $k \leq \ell$.
- 6. Recall the following characterization of completeness for metric spaces.

Theorem (Completeness via nonempty intersections). For a metric space (X,d), the following are equivalent.

(1) (X,d) is complete.

¹This is a weaker property than Hausdorff.

²Formally speaking, a *subsequence* of a sequence (x_n) is a sequence (y_k) such that there is a strictly increasing map $\mathbb{N} \to \mathbb{N}$ denoted $k \mapsto n_k$ such that $y_k = x_{n_k}$ for each $k \in \mathbb{N}$. Instead of writing (y_k) , we simply write (x_{n_k}) , with the understanding that the n_k are increasing, i.e., $n_0 < n_1 < n_2 < ...$

- (2) Every decreasing³ sequence (C_n) of closed sets with vanishing diameter⁴ has a nonempty intersection.
- (3) Every decreasing sequence (B_n) of closed balls of vanishing radius (equivalently, vanishing diameter) has a nonempty intersection.

In class we proved $(1) \Leftrightarrow (2)$. Noting that $(2) \Rightarrow (3)$ is trivial, prove $(3) \Rightarrow (1)$ following the steps below.

- (i) Assume (3), and to prove (1), fix a Cauchy sequence (x_n) . Aiming to prove that it converges, argue that it is enough to show that a subsequence of (x_n) converges.
- (ii) Let $(y_k) := (x_{n_k})$ be a subsequence as in Problem 5.
- (iii) Prove that for each $k \in \mathbb{N}$, the closed ball $\overline{B}(y_k, 2^{-k})$ contains the k^{th} tail set $T_k := \{y_m : m \ge k\}$ and $\overline{B}(y_k, 2 \cdot 2^{-k}) \supseteq \overline{B}(y_{k+1}, 2 \cdot 2^{-(k+1)})$.
- (iv) Conclude that $\bigcap_{k \in \mathbb{N}} \overline{B}(y_k, 2 \cdot 2^{-k}) \neq \emptyset$, so $\bigcap_{k \in \mathbb{N}} \overline{B}(y_k, 2 \cdot 2^{-k}) = \{x\}$ for some *x*.
- (v) Prove that there is a subsequence (y_{k_m}) converging to x, thus showing that a subsequence of (x_n) converges.
- Let *T* be the (weird) topology on ℝ generated by the sets {0, *r*}, where *r* ranges over ℝ. In particular {0, 0} = {0} is open.
 - (a) Draw this topological space as a flower (daisy) with 0 being the center and the sets $\{0, r\}$, with $r \neq 0$, being the petals.
 - (b) Observe that the sets $\{0, r\}$, with $r \in \mathbb{R}$, actually form a base for the topology.
 - (c) Prove that this space is not Hausdorff; in fact, {0} is not closed.
 - (d) Show that for each $r \in \mathbb{R}$, the collection $\{\{0, r\}\}$ is a neighborhood base for r. Conclude that \mathcal{T} is first-countable.
 - (e) Yet, show that \mathcal{T} is not second-countable.
 - (f) Prove that the set {0} is dense. Conclude that this space is separable.
- 8. Reprove carefully that for a first-countable space, compactness implies sequential compactness.
- **9.** Let (X, d) be a metric space. For $\varepsilon > 0$, call a set $F \subseteq X$ an ε -*net* if the open balls $B(x, \varepsilon)$ with $x \in F$ cover all of X, i.e., $X = \bigcup_{x \in F} B(x, \varepsilon)$. Call the space X *totally bounded* if for each $\varepsilon > 0$, there is a finite ε -net. Prove that (X, d) is sequentially compact if and only if it is complete and totally bounded.

HINT: Prove \Rightarrow via the contrapositive. The proof of \Leftarrow is very similar to that of the Bolzano–Weierstrass theorem, except that in the latter we always put infinitely-many pigeons into two holes, whereas here, we put infinitely-many pigeons into finitely-many holes (the ε -nets are finite).

³A sequence (S_n) is said to be *decreasing* (resp., *increasing*) if $C_n \supseteq C_{n+1}$ (resp., $C_n \subseteq C_{n+1}$) for all $n \in \mathbb{N}$.

⁴*Vanishing diameter* means that diam(C_n) \rightarrow 0, where for $A \subseteq X$, diam(A) := sup{ $d(x, y) : x, y \in A$ }.

Rемаrк: By Problem 8, compactness implies sequential compactness for metric spaces. The converse is also true, but it's a bit harder to show. Ask me if you are curious.

10. Consider \mathbb{R} with its standard metric.

- (a) Prove that a subset of \mathbb{R} is complete (as a sub-metric space of \mathbb{R}) if and only if it is closed.
- (b) Prove that a subset of \mathbb{R} is totally bounded if and only if it is bounded.
- (c) Conclude that a subset of \mathbb{R} is sequentially compact if and only if it is closed and bounded.